|
Minimax Theory and its Applications 07 (2022), No. 2, 365--380 Copyright Heldermann Verlag 2022 A Computer Assisted Proof of the Symmetries of Least Energy Nodal Solutions on Squares Ariel Salort (1) Dep. de Matemática, FCEyN, Universidad de Buenos Aires, Argentina (2) IMAS - CONICET, Buenos Aires, Argentina asalort@dm.uba.ar Christophe Troestler Dép. de Mathématique, Université de Mons, Belgium christophe.troestler@umons.ac.be [Abstract-pdf] Using a Lyapunov-Schmidt reduction on an asymptotic Nehari manifold and verified computations, we prove that the least energy nodal solutions to Lane-Emden equation $-\Delta u = |u|^{p-2} u$ with zero Dirichlet boundary conditions on a square are odd with respect to one diagonal and even with respect to the other one when $p$ is close to $2$. Keywords: Least energy sign changing solutions, symmetries, interval arithmetic, verified computation. MSC: 35J20; 35B06, 65G40. [ Fulltext-pdf (183 KB)] for subscribers only. |