|
Minimax Theory and its Applications 06 (2021), No. 2, 239--250 Copyright Heldermann Verlag 2021 Quasilinear Problems without the Ambrosetti-Rabinowitz Condition Anna Maria Candela Dip. di Matematica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy annamaria.candela@uniba.it Genni Fragnelli Dip. di Matematica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy genni.fragnelli@uniba.it Dimitri Mugnai Dip. di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, 01100 Viterbo, Italy dimitri.mugnai@unitus.it We show the existence of nontrivial solutions for a class of quasilinear problems in which the governing operators depend on the unknown function. By using a suitable variational setting and a weak version of the Cerami-Palais-Smale condition, we establish the desired result without assuming that the nonlinear source satisfies the Ambrosetti-Rabinowitz condition. Keywords: Quasilinear equation, weak Cerami-Palais-Smale condition, failure of the Ambrosetti-Rabinowitz condition, p-superlinear problem, subcritical growth. MSC: 35J92, 35J20, 35J60. [ Fulltext-pdf (122 KB)] for subscribers only. |