|
Minimax Theory and its Applications 04 (2019), No. 1, 087--099 Copyright Heldermann Verlag 2019 Harnack Inequality and Smoothness for some Non Linear Degenerate Elliptic Equations Giuseppe Di Fazio Dip. di Matematica e Informatica, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy difazio@dmi.unict.it Maria S. Fanciullo Dip. di Matematica e Informatica, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy fanciullo@dmi.unict.it Pietro Zamboni Dip. di Matematica e Informatica, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy zamboni@dmi.unict.it We prove Harnack inequality and smoothness for weak solutions of quasilinear degenerate elliptic equation with respect to a system of non commuting vector fields. In addition, the structure assumptions allow quadratic growth in the gradient. Keywords: Harnack inequality, Muckenhoupt weights, degenerate elliptic equations, Stummel-Kato classes, Hoermander vector fields. MSC: 35B45, 35B65 [ Fulltext-pdf (122 KB)] for subscribers only. |