|
Minimax Theory and its Applications 04 (2019), No. 1, 001--019 Copyright Heldermann Verlag 2019 On a Fractional p&q Laplacian Problem with Critical Growth Vincenzo Ambrosio Department of Mathematics, EPFL SB CAMA, Station 8, 1015 Lausanne, Switzerland vincenzo.ambrosio2@unina.it Teresa Isernia Dip. di Ingegneria Industriale e Scienze Matematiche, Univ. Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy teresa.isernia@unina.it Gaetano Siciliano Departamento de Matemática, Universidade de Sao Paulo, Rua do Matao 1010, 05508-090 Sao Paulo, Brazil sicilian@ime.usp.br [Abstract-pdf] \newcommand{\q}{q^{*}_{s}} \newcommand{\R}{\mathbb R} We deal with a class of nonlocal problems of the type \begin{equation*} \left\{ \begin{array}{ll} (-\Delta)^{s}_{p}u+(-\Delta)^{s}_{q}u= \lambda |u|^{r-2}u+|u|^{\q-2}u &\mbox{ in } \Omega\\[1mm] u=0 &\mbox{ in } \R^{N}\setminus \Omega, \end{array} \right. \end{equation*} where $s\in (0, 1)$, $1 0$ is a parameter.
Roughly speaking, when $r$ is ``large'' we prove the existence of a solution for large values of
$\lambda$ and when $r$ is ``small'' we prove the existence of infinitely many solutions for small
values of $\lambda$.
|