Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Minimax Theory and its Applications 02 (2017), No. 1, 027--040
Copyright Heldermann Verlag 2017



Nodal Solutions Bifurcating from Infinity for some Singular p-Laplace Equations: Flat and Compact Support Solutions

Jesús I. Díaz
Instituto de Matemática Interdisciplinar, Universidad Complutense, Plaza de las Ciencias 3, 28040 Madrid, Spain
ildefonso_diaz@mat.ucm.es

Jesús Hernández
Don Ramón de la Cruz 73-7A, 28001 Madrid, Spain

Francisco J. Mancebo
E.T.S. Ingeniería Aeronáutica, Universidad Politécnica, 28040 Madrid, Spain
fj.mancebo@upm.es



We study the existence and multiplicity of nodal solutions with normal exterior derivative different or equal to zero (case of \textit{flat solutions}) or having a \textit{free boundary} (the boundary of the set where the solution vanishes) of some one-dimensional p-Laplace problems of eigenvalue type with homogeneous Dirichlet boundary conditions and a, possibly singular, nonlinear absorption term.

[ Fulltext-pdf  (157  KB)] for subscribers only.