Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 34 (2024), No. 4, 829--862
Copyright Heldermann Verlag 2024



Structure Constants for Simple Lie Algebras from a Principal sl2-Triple

Abdelmalek Abdesselam
Department of Mathematics, University of Virginia, Charlottesville, U.S.A.
malek@virginia.edu

Alexander Thomas
Institut Camille Jordan, Université Lyon 1, Villeurbanne, France
athomas@math.univ-lyon1.fr



[Abstract-pdf]

For a simple complex Lie algebra $\mathfrak g$, fixing a principal $\mathfrak{sl}_2$-triple and highest weight vectors induces a basis of $\mathfrak g$ as vector space. For $\mathfrak{sl}_n({\mathbb C})$, we describe how to compute the Lie bracket in this basis using transvectants. This generalizes a well-known rule for $\mathfrak{sl}_2$ using Poisson brackets and degree 2 monomials in two variables. Our proof method uses a graphical calculus for classical invariant theory. Other Lie algebra types are discussed.

Keywords: Lie algebras, invariant theory, transvectants, 6j-symbols.

MSC: 17B05, 13A50.

[ Fulltext-pdf  (442  KB)] for subscribers only.