|
Journal of Lie Theory 16 (2006), No. 3, 561--567 Copyright Heldermann Verlag 2006 On Centralizers of Elements in the Lie Algebra of the Special Cremona Group SA2(k) Anatoliy P. Petravchuk Taras Shevchenko University, Faculty of Mechanics and Mathematics, 64 Volodymyrska Street, 01033 Kyiv, Ukraine aptr@univ.kiev.ua Oleksandr G. Iena Technische Universität, Fachbereich Mathematik, Postfach 3049, 67653 Kaiserslautern, Germany Permanent Address: Taras Shevchenko University, Faculty of Mechanics and Mathematics, 64 Volodymyrska Street, 01033 Kyiv, Ukraine yena@mathematik.uni-kl.de [Abstract-pdf] \def\div{\mathop{\rm div}\nolimits} \def\Der{\mathop{\rm Der}\nolimits} We give a description of maximal abelian subalgebras and centralizers of elements in the Lie algebra $sa_2(k)=\{D\in \Der k[x,y] \mid \div D = 0\}$ over an algebraically closed field $k$ of characteristic $0$. This description is given in terms of closed polynomials. Keywords: Lie algebra, derivation, closed polynomial maximal abelian subalgebra. MSC: 17B65, 17B05 [ Fulltext-pdf (160 KB)] for subscribers only. |