Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 16 (2006), No. 3, 539--560
Copyright Heldermann Verlag 2006



Lie Superalgebras Based on a 3-Dimensional Real or Complex Lie Algebra

Isabel Hernández
Centro de Investigacion en Matematicas, Apdo. Postal 402, C.P. 36000 Guanajuato, Gto., Mexico
isabel@cimat.mx

Gil Salgado
Centro de Investigacion en Matematicas, Apdo. Postal 402, C.P. 36000 Guanajuato, Gto., Mexico
salgado@cimat.mx

Oscar Adolfo Sánchez-Valenzuela
Centro de Investigacion en Matematicas, Apdo. Postal 402, C.P. 36000 Guanajuato, Gto., Mexico
adolfo@cimat.mx



[Abstract-pdf]

\def\g{{\frak g}} We give a complete classification of real and complex Lie superalgebras $\g_0\oplus\g_1$, for which $\g_0$ is a $3$-dimensional Lie algebra, and $\g_1$ is $\g_0$ itself under the adjoint representation.

Keywords: Lie superalgebras, adjoint representation, symmetric equivariant maps.

MSC: 17B70, 81R05; 15A21, 15A63, 17B81

[ Fulltext-pdf  (237  KB)] for subscribers only.