|
Journal of Convex Analysis 31 (2024), No. 3, 1035--1037 Copyright Heldermann Verlag 2024 Correction to "Analysis of the Implicit Euler Time-Discretization of a Class of Descriptor-Variable Linear Cone Complementarity Systems", J. Convex Analysis 29/2 (2022) 481--517 Quang-Hung Pham Université Grenoble Alpes, INRIA, CNRS, Grenoble INP, LJK, Grenoble, France Bernard Brogliato Université Grenoble Alpes, INRIA, CNRS, Grenoble INP, LJK, Grenoble, France [Abstract-pdf] This note corrects a mistake in a recent paper of B.\,Brogliatio [{\it Analysis of the implicit Euler time-discretization of a class of descriptor-variable linear cone complementarity systems}, J. Convex Analysis 29/2 (2022) 481--517] concerning the characterization of the domain of an operator of the form $\Phi(t,\cdot):=(\partial \sigma_{\Gamma(t)}+D)^{-1}(\cdot)$, $D=D^{\top}$ a constant positive semi-definite matrix, $\Gamma(t)$ a nonempty closed convex set for each $t$, $\sigma_{\Gamma(t)}(\cdot)$ its support function. Keywords: Linear complementarity problem, sum of operators, maximal monotone operator. MSC: 65K15, 94C60, 49J53, 34A09, 34A12, 34A60. [ Fulltext-pdf (75 KB)] for subscribers only. |