|
Journal of Convex Analysis 28 (2021), No. 2, 535--548 Copyright Heldermann Verlag 2021 A Numerical Study of the Jerky Crack Growth in Elastoplastic Materials with Localized Plasticity Gianni Dal Maso SISSA, Via Bonomea 265, 34136 Trieste, Italy dalmaso@sissa.it Luca Heltai SISSA, Via Bonomea 265, 34136 Trieste, Italy luca.heltai@sissa.it We present a numerical implementation of a model of quasi-static crack growth in linearly elastic-perfectly plastic materials. We assume that the displacement is antiplane, and that the cracks and the plastic slips are localized on a prescribed path. We provide numerical evidence of the fact that the crack growth is intermittent, with jump characteristics that depend on the material properties. Keywords: Fracture mechanics, plasticity, quasistatic evolution, rate-independent problems, finite element method. MSC: 49K10, 35J05, 35J25, 65N22, 74A45, 74C05. [ Fulltext-pdf (1813 KB)] for subscribers only. |