|
Journal of Convex Analysis 28 (2021), No. 2, 509--534 Copyright Heldermann Verlag 2021 M-Convergence of p-Fractional Energies in Irregular Domains Simone Creo Dip. di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università, Roma, Italy Maria Rosaria Lancia Dip. di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università, Roma, Italy maria.lancia@sbai.uniroma1.it Paola Vernole Dip. di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università, Roma, Italy We study the asymptotic behavior of anomalous p-fractional energies in bad domains via the M-convergence. These energies arise naturally when studying Robin-Venttsel' problems for the regional fractional p-Laplacian. We provide a suitable notion of fractional normal derivative on irregular sets via a fractional Green formula as well as existence and uniqueness results for the solution of the Robin-Venttsel' problem by a semigroup approach. Markovianity properties of the associated semigroup are proved. Keywords: Fractional p-Laplacian, fractal domains, fractional Green formula, M-convergence, nonlinear semigroups, dynamical boundary conditions. MSC: 35R11, 35B40; 28A80, 47H20, 47J35. [ Fulltext-pdf (254 KB)] for subscribers only. |