|
Journal of Convex Analysis 18 (2011), No. 1, 285--300 Copyright Heldermann Verlag 2011 On the Strong Law of Large Numbers in Spaces of Compact Sets Francesco S. de Blasi Dip. di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Roma, Italy deblasi@mat.uniroma2.it Luca Tomassini Dip. di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Roma, Italy tomassin@mat.uniroma2.it [Abstract-pdf] \def\bE{{\mathbb E}} \def\bR{{\mathbb R}} \def\cK{{\cal K}} \def\fY{{\mathfrak Y}} Let $\fY$ be the space of all nonempty compact subsets of $\bR^d$ and let $\cK(\fY)$ be the space of all nonempty compact subsets of $\fY$. For a random set with values in $\cK(\fY)$, after defining the expectation, we establish a version of the strong law of large numbers. Some related results concerning the case of nonempty compact convex subsets of a Banach space $\bE$ are included. [ Fulltext-pdf (159 KB)] for subscribers only. |