Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 18 (2011), No. 1, 285--300
Copyright Heldermann Verlag 2011



On the Strong Law of Large Numbers in Spaces of Compact Sets

Francesco S. de Blasi
Dip. di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Roma, Italy
deblasi@mat.uniroma2.it

Luca Tomassini
Dip. di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Roma, Italy
tomassin@mat.uniroma2.it



[Abstract-pdf]

\def\bE{{\mathbb E}} \def\bR{{\mathbb R}} \def\cK{{\cal K}} \def\fY{{\mathfrak Y}} Let $\fY$ be the space of all nonempty compact subsets of $\bR^d$ and let $\cK(\fY)$ be the space of all nonempty compact subsets of $\fY$. For a random set with values in $\cK(\fY)$, after defining the expectation, we establish a version of the strong law of large numbers. Some related results concerning the case of nonempty compact convex subsets of a Banach space $\bE$ are included.

[ Fulltext-pdf  (159  KB)] for subscribers only.