|
Journal of Convex Analysis 18 (2011), No. 1, 277--284 Copyright Heldermann Verlag 2011 Existence of an Absolute Minimizer via Perron's Method Vesa Julin Dept. of Mathematics and Statistics, P. O. Box 35, University of Jyväskylä, 40014 Jyväskylä, Finland vesa.julin@jyu.fi [Abstract-pdf] The existence of an absolute minimizer for a functional \[ F(u,\Omega) = \underset{x \in \Omega}{ \text{ess sup}} \, f (x, u(x), Du(x)) \] is proved by using Perron's method. The function is assumed to be quasiconvex and uniformly coercive. This completes the result by T. Champion, L. De Pascale and F. Prinari [Gamma-convergence and absolute minimizers for supremal functionals, ESAIM Control Optim. Calc. Var. 10 (2004), No. 1, 14--27 (electronic)]. Keywords: Supremal functionals, absolute minimizer. MSC: 49J45, 49J99 [ Fulltext-pdf (115 KB)] for subscribers only. |