Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 27 (2020), No. 4, 1195--1218
Copyright Heldermann Verlag 2020



Convex Envelopes on Trees

Leandro M. Del Pezzo
CONICET and Dep. de Matemática, FCEyN, Universidad de Buenos Aires, Argentina
ldpezzo@dm.uba.ar

Nicolas Frevenza
Dep. de Métodos Cuantitativos, FCEA, Universidad de la República, Montevideo, Uruguay
nfrevenza@dm.uba.ar

Julio D. Rossi
CONICET and Dep. de Matemática, FCEyN, Universidad de Buenos Aires, Argentina
jrossi@dm.uba.ar



We introduce two notions of convexity for an infinite regular tree. For these two notions we show that given a continuous boundary datum there exists a unique convex envelope on the tree and characterize the equation that this envelope satisfies. We also relate the equation with two versions of the Laplacian on the tree. Moreover, for a function defined on the tree, the convex envelope turns out to be the solution to the obstacle problem for this equation.

Keywords: Convexity on graphs, Laplacian on graphs, convex envelopes.

MSC: 35R02, 05C05, 52A41.

[ Fulltext-pdf  (159  KB)] for subscribers only.