|
Journal of Convex Analysis 27 (2020), No. 4, 1195--1218 Copyright Heldermann Verlag 2020 Convex Envelopes on Trees Leandro M. Del Pezzo CONICET and Dep. de Matemática, FCEyN, Universidad de Buenos Aires, Argentina ldpezzo@dm.uba.ar Nicolas Frevenza Dep. de Métodos Cuantitativos, FCEA, Universidad de la República, Montevideo, Uruguay nfrevenza@dm.uba.ar Julio D. Rossi CONICET and Dep. de Matemática, FCEyN, Universidad de Buenos Aires, Argentina jrossi@dm.uba.ar We introduce two notions of convexity for an infinite regular tree. For these two notions we show that given a continuous boundary datum there exists a unique convex envelope on the tree and characterize the equation that this envelope satisfies. We also relate the equation with two versions of the Laplacian on the tree. Moreover, for a function defined on the tree, the convex envelope turns out to be the solution to the obstacle problem for this equation. Keywords: Convexity on graphs, Laplacian on graphs, convex envelopes. MSC: 35R02, 05C05, 52A41. [ Fulltext-pdf (159 KB)] for subscribers only. |