Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 26 (2019), No. 2, 353--396
Copyright Heldermann Verlag 2019



A Framework for Wasserstein-1-Type Metrics

Bernhard Schmitzer
Institut für Analysis und Numerik, Westfälische Wilhelms-Universität, Einsteinstr. 62, 48149 Münster, Germany
schmitzer@uni-muenster.de

Benedikt Wirth
Institut für Analysis und Numerik, Westfälische Wilhelms-Universität, Einsteinstr. 62, 48149 Münster, Germany



We propose a unifying framework for generalising the Wasserstein-1 metric to a discrepancy measure between nonnegative measures of different mass. This generalization inherits the convexity and computational efficiency from the Wasserstein-1 metric, and it includes several previous approaches from the literature as special cases. For various specific instances of the generalized Wasserstein-1 metric we furthermore demonstrate their usefulness in applications by numerical experiments.

Keywords: Convex optimization, unbalanced optimal transport, minimum-cost flow, Kantorovich-Rubinstein formula.

MSC: 49M29, 65K10

[ Fulltext-pdf  (1912  KB)] for subscribers only.