|
Journal of Convex Analysis 26 (2019), No. 2, 353--396 Copyright Heldermann Verlag 2019 A Framework for Wasserstein-1-Type Metrics Bernhard Schmitzer Institut für Analysis und Numerik, Westfälische Wilhelms-Universität, Einsteinstr. 62, 48149 Münster, Germany schmitzer@uni-muenster.de Benedikt Wirth Institut für Analysis und Numerik, Westfälische Wilhelms-Universität, Einsteinstr. 62, 48149 Münster, Germany We propose a unifying framework for generalising the Wasserstein-1 metric to a discrepancy measure between nonnegative measures of different mass. This generalization inherits the convexity and computational efficiency from the Wasserstein-1 metric, and it includes several previous approaches from the literature as special cases. For various specific instances of the generalized Wasserstein-1 metric we furthermore demonstrate their usefulness in applications by numerical experiments. Keywords: Convex optimization, unbalanced optimal transport, minimum-cost flow, Kantorovich-Rubinstein formula. MSC: 49M29, 65K10 [ Fulltext-pdf (1912 KB)] for subscribers only. |