|
Journal of Convex Analysis 25 (2018), No. 2, 623--641 Copyright Heldermann Verlag 2018 Minimization of Quadratic Functions on Convex Sets without Asymptotes Juan-Enrique Martinez-Legaz Dep. d'Economia i d'Història Econòmica, Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain JuanEnrique.Martinez.Legaz@uab.es Dominikus Noll Institut de Mathématiques, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse, France dominikus.noll@math.univ-toulouse.fr Wilfredo Sosa Programa de Pôs-Graduação em Economia, Universidade Católica de Brasilia, Brazil sosa@ucb.br The classical Frank and Wolfe theorem states that a quadratic function which is bounded below on a convex polyhedron P attains its infimum on P. We investigate whether more general classes of convex sets F can be identified which have this Frank-and-Wolfe property. We show that the intrinsic characterizations of Frank-and-Wolfe sets hinge on asymptotic properties of these sets. Keywords: Quadratic optimization problem, asymptotes, conic asymptotes, Motzkin decomposition, Frank and Wolfe theorem, complementarity problem. MSC: 90C20, 90C26 [ Fulltext-pdf (155 KB)] for subscribers only. |