|
Journal of Convex Analysis 13 (2006), No. 3, 587--602 Copyright Heldermann Verlag 2006 Boundedness, Differentiability and Extensions of Convex Functions Jonathan Borwein Faculty of Computer Science, Dalhousie University, Halifax, N.S., Canada B3H 1W5 jborwein@cs.dal.ca Vicente Montesinos Instituto de Matemática Pura y Aplicada, Universidad Politécnica, C/Vera s/n, 46022 Valencia, Spain vmontesinos@mat.upv.es Jon D. Vanderwerff Dept. of Mathematics, La Sierra University, Riverside, CA 92515, U.S.A. jvanderw@lasierra.edu We survey various boundedness, differentiability and extendibility properties of convex functions, and how they are related to sequential convergence with respect to various topologies in the dual space. It is also shown that if X/Y is separable then every continuous convex function on Y can be extended to a continuous convex function on X. Keywords: Convex function, Schur property, Dunford-Pettis property, Grothendieck property, extensions. MSC: 52A41; 46G05, 46N10, 49J50, 90C25 [ Fulltext-pdf (419 KB)] for subscribers only. |