R&E 18
Catalogue of all |
Research and Exposition in Mathematics -- Volume 18
H. Herrlich and H.-E. Porst (eds.) Preface vii--viii [FullText] Section I: Topology H. L. Bentley, H. Herrlich, R. Lowen Improving Constructions in Topology 3--20 [FullText] H. Herrlich, E. Lowen-Colebunders, F. Schwarz Improving Top: PrTop and PsTop 21--34 [FullText] F. Schwarz, S. Weck-Schwarz Internal Description of Hulls: A Unified Approach 35--45 [FullText] G. Preuss Point Separation Axioms, Monotopological Categories and MacNeille Completions 47--55 [FullText] M. Erné The ABC of Order and Topology 57--83 [FullText] P. T. Johnstone The Art of Pointless Thinking: A Student's Guide to the Category of Locales 85--107 [FullText] Section II: Topology Meets Algebra H.-E. Porst, W. Tholen Concrete Dualities 111-136 [FullText] H. Herrlich, T. Mossakowski, G. E. Strecker Algebra Union Topology 137--148 [FullText] G. Jarzembski Free Spectra of Concrete Categories and Mixed Structures 149--164 [FullText] H.-E. Porst On the Existence and Structure of Free Topological Groups 165--176 [FullText] K. H. Hofmann, S. A. Morris Free Compact Groups V: Remarks and Projectivity 177--198 [FullText] G. Richter Axiomatizing the Category of Compact Hausdorff Spaces 199--215 [FullText] E. Makai jun. Automorphisms and Full Embeddings of Categories in Algebra and Topology 217--260 [FullText] G. Richter Algebra Contained in Topology ?! 261--273 [FullText] Section III: Algebra and Computer Science J. Reiterman, V. Trnková Free Structures 277--288 [FullText] H. W. Bargenda Universal Algebraic Completions of Right Adjoint Functors 289--306 [FullText] M. Sobral Contravariant Hom-Functors and Monadicity 307--319 [FullText] H. Roehrl Convexity Theories Upside-Down-Omega -- Back to the Future 321--324 [FullText] J. W. Gray Products in Per: An Elementary Treatment of the Semantics of the Polymorphic Lambda Calculus 325--340 [FullText] Section IV: Analysis L. D. Nel Nonlinear Existence Theorems in Nonnormable Analysis 343--365 [FullText] R. Boerger Fubini's Theorem from a Categorical Viewpoint 367--375 [FullText] W.Weiss Sophus Lie's Fundamental Theorem -- Categorical Aspects 377--386 [FullText] D. Pumpluen, H. Roehrl Convexity Theories II. The Hahn-Banach Theorem for Real Convexity Theories 387--395 [FullText] |