|
Journal of Lie Theory 34 (2024), No. 4, 975--996 Copyright Heldermann Verlag 2024 Left Invariant Semi Riemannian Metrics on Quadratic Lie Groups Shirley Bromberg Departamento de Matemáticas, Universidad Autónoma Metropolitana, Iztapalapa, México D.F. stbs@xanum.uam.mx Alberto Medina Institut A. Grothendieck, Université de Montpellier, France alberto.medina@umontpellier.fr Andrés Villabón Escuela de Ciencias Básicas, Universidad Nacional Abierta y a Distancia, Medellín, Colombia edgar.villabon@unad.edu.co To determine the Lie groups that admit a flat (eventually geodesically complete) left invariant semi-Riemannian metric is an open and difficult problem. The main aim of this paper is the study of the flatness of left invariant semi-Riemannian metrics on quadratic Lie groups i.e. Lie groups endowed with a bi-invariant semi-Riemannian metric. We give a useful necessary and sufficient condition that guarantees the flatness of a left invariant semi-Riemannian metric defined on a quadratic Lie group. All these semi-Riemannian metrics are complete. We show that there are no Riemannian flat left invariant metrics on non Abelian quadratic Lie groups. We study the Jacobi fields of any left invariant semi-Riemannian metric on a Lie group, using the notion of reflections. The case of Oscillator groups is addressed. This paper is a modification of a 2011 previous version due to the first two authors. Keywords: Left invariant semi-Riemannian metrics, flat semi Riemannian metrics, geodesically complete manifolds, quadratic Lie groups, Jacobi fields. MSC: 53B05, 70G45, 22E30. [ Fulltext-pdf (172 KB)] for subscribers only. |