|
Journal of Lie Theory 34 (2024), No. 3, 735--751 Copyright Heldermann Verlag 2024 Respectful Decompositions of Lie Algebras Grant Cairns Dept. of Mathematical and Physical Sciences, La Trobe University, Melbourne, Australia G.Cairns@latrobe.edu.au Yuri Nikolayevsky Dept. of Mathematical and Physical Sciences, La Trobe University, Melbourne, Australia Y.Nikolayevsky@latrobe.edu.au [Abstract-pdf] One of Pierre Molino's principal mathematical achievements was his theory of Riemannian foliations. One of his last papers, published in 2001, showed that his theory could be extended to a large class of non-integrable distributions. The key example here is that of a \emph{respectful decomposition} of a Lie algebra $\mathfrak g$; this is vector space decomposition ${\mathfrak g} = H+V$ such that $[V,H]\subseteq H$. This paper will examine the basic properties of respectful decompositions. Keywords: Nilpotent Lie algebra, geodesic. MSC: 17B30, 58A30. [ Fulltext-pdf (153 KB)] for subscribers only. |