|
Journal of Lie Theory 32 (2022), No. 4, 1125--1138 Copyright Heldermann Verlag 2022 Primitive Lie Algebras of Rational Vector Fields Guy Casale Université de Rennes, CNRS, IRMAR - UMR 6625, 35000 Rennes, France guy.casale@univ-rennes1.fr Frank Loray Université de Rennes, CNRS, IRMAR - UMR 6625, 35000 Rennes, France frank.loray@univ-rennes1.fr Jorge Vitório Pereira IMPA, Rio de Janeiro, Brasil jvp@impa.br Frédéric Touzet Université de Rennes, CNRS, IRMAR - UMR 6625, 35000 Rennes, France frederic.touzet@univ-rennes1.fr Let g be a transitive, finite-dimensional Lie algebra of rational vector fields on a projective manifold. If g is primitive, i.e., does not locally preserve any foliation, then it determines a rational map to an algebraic homogenous space G/H which maps g to Lie(G). Keywords: Lie algebras of vector fields. MSC: 16W25, 17B66, 32M25. [ Fulltext-pdf (157 KB)] for subscribers only. |