Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 32 (2022), No. 4, 1125--1138
Copyright Heldermann Verlag 2022



Primitive Lie Algebras of Rational Vector Fields

Guy Casale
Université de Rennes, CNRS, IRMAR - UMR 6625, 35000 Rennes, France
guy.casale@univ-rennes1.fr

Frank Loray
Université de Rennes, CNRS, IRMAR - UMR 6625, 35000 Rennes, France
frank.loray@univ-rennes1.fr

Jorge Vitório Pereira
IMPA, Rio de Janeiro, Brasil
jvp@impa.br

Frédéric Touzet
Université de Rennes, CNRS, IRMAR - UMR 6625, 35000 Rennes, France
frederic.touzet@univ-rennes1.fr



Let g be a transitive, finite-dimensional Lie algebra of rational vector fields on a projective manifold. If g is primitive, i.e., does not locally preserve any foliation, then it determines a rational map to an algebraic homogenous space G/H which maps g to Lie(G).

Keywords: Lie algebras of vector fields.

MSC: 16W25, 17B66, 32M25.

[ Fulltext-pdf  (157  KB)] for subscribers only.