|
Journal of Lie Theory 32 (2022), No. 4, 917--936 Copyright Heldermann Verlag 2022 On Lie Superalgebras with a Filiform Module as an Odd Part Elisabete Barreiro University of Coimbra, CMUC, Department of Mathematics, Coimbra, Portugal mefb@mat.uc.pt Said Benayadi Lab. de Mathématiques, IECL UMR CNRS 7502, Université de Lorraine, Metz, France said.benayadi@univ-lorraine.fr Rosa M. Navarro Departamento de Matemáticas, Universidad de Extremadura, Cáceres, Spain rnavarro@unex.es José M. Sánchez Departamento de Matemáticas, Universidad de Cádiz, Puerto Real, Spain txema.sanchez@uca.es [Abstract-pdf] The aim of this work is on one hand to characterise in any even dimension, via double extensions, a very special family of quadratic Lie superalgebras ${\mathfrak g}={\mathfrak g}_{\bar 0}\oplus {\mathfrak g}_{\bar 1}$ such that ${\mathfrak g}_{\bar 1}$ is a filiform ${\mathfrak g}_{\bar 0}$-module (filiform type). On the other hand, we show that the study of quadratic Lie superalgebras of filiform type can be reduced to those that are solvable. Moreover, we obtain an inductive description of solvable quadratic Lie superalgebras of filiform type via both double extensions and odd double extensions of quadratic ones. Keywords: Lie superalgebras, quadratic Lie superalgebras, double extensions, solvable, filiform. MSC: 17A70, 17B05, 17B30. [ Fulltext-pdf (166 KB)] for subscribers only. |