Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 32 (2022), No. 3, 821--838
Copyright Heldermann Verlag 2022



Real Structures on Nilpotent Orbit Closures

Michael Bulois
Institut Camille Jordan, UMR 5208 CNRS, Université de Lyon, France
and: Université Jean Monnet, Saint-Etienne, France
michael.bulois@univ-st-etienne.fr

Lucy Moser-Jauslin
Institut de Mathématiques de Bourgogne, UMR 5584 CNRS, Université Bourgogne Franche-Comté, Dijon, France
lucy.moser-jauslin@u-bourgogne.fr

Ronan Terpereau
Institut de Mathématiques de Bourgogne, UMR 5584 CNRS, Université Bourgogne Franche-Comté, Dijon, France
ronan.terpereau@u-bourgogne.fr



We determine the equivariant real structures on nilpotent orbits and the normalizations of their closures for the adjoint action of a complex semisimple algebraic group on its Lie algebra.

Keywords: Nilpotent orbit, homogeneous space, real structure, real form, Galois cohomology.

MSC: 14R20, 14M17, 14P99, 11S25, 20G20.

[ Fulltext-pdf  (175  KB)] for subscribers only.