Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 32 (2022), No. 3, 771--796
Copyright Heldermann Verlag 2022



The Earliest Diamond of Finite Type in Nottingham Algebras

Marina Avitabile
Università degli Studi di Milano-Bicocca, Milano, Italy
marina.avitabile@unimib.it

Sandro Mattarei
Charlotte Scott Centre for Algebra, University of Lincoln, United Kingdom
smattarei@lincoln.ac.uk



We prove several structural results on Nottingham algebras, a class of infinite-dimensional, modular, graded Lie algebras, which includes the graded Lie algebra associated to the Nottingham group with respect to its lower central series. Homogeneous components of a Nottingham algebra have dimension one or two, and in the latter case they are called diamonds. The first diamond occurs in degree 1, and the second occurs in degree q, a power of the characteristic. Each diamond past the second is assigned a type, which either belongs to the underlying field or is ∞.
Nottingham algebras with a variety of diamond patterns are known. In particular, some have diamonds of both finite and infinite type. We prove that each of those known examples is uniquely determined by a certain finite-dimensional quotient. Finally, we determine how many diamonds of type ∞ may precede the earliest diamond of finite type in an arbitrary Nottingham algebra.

Keywords: Modular Lie algebra, graded Lie algebra, thin Lie algebra.

MSC: 17B50; 17B70, 17B65.

[ Fulltext-pdf  (176  KB)] for subscribers only.