|
Journal of Lie Theory 31 (2021), No. 4, 1031--1044 Copyright Heldermann Verlag 2021 Structure and Representations for the Electrical Lie Algebra of Type D4 Dongfang Gao School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China gaodfw@mail.ustc.edu.cn Yan-an Cai Dept. of Mathematics, Soochow University, Suzhou, Jiangsu, P. R. China yatsai@mail.ustc.edu.cn Jin Jiang Dept. of Mathematics, Soochow University, Suzhou, Jiangsu, P. R. China mxsl369@163.com [Abstract-pdf] We prove the dimension conjecture for electrical Lie algebra $\mathfrak{e}_{D_4}$ of type $D_4$. Moreover, we present a new method to construct $3$-step nilpotent Lie algebras and show that $\mathfrak{e}_{D_4}$ is isomorphic to the semidirect product of $\mathfrak{s}\mathfrak{l}_2$ with a $3$-step nilpotent Lie algebra constructed from the colored complete bipartible graph $K_{2,2}$. Also, we classify all simple highest weight modules for $\mathfrak{e}_{D_4}$. Keywords: Electrical Lie algebras, 3-step nilpotent Lie algebra, highest weight modules, simple modules. MSC: 17B10, 17B20, 17B65, 17B66, 17B68. [ Fulltext-pdf (153 KB)] for subscribers only. |