|
Journal of Lie Theory 31 (2021), No. 1, 149--168 Copyright Heldermann Verlag 2021 On Hom-Pre-Lie Bialgebras Shanshan Liu Dept. of Mathematics, Jilin University, Changchun 130012, P. R. China shanshan18@mails.jlu.edu.cn Abdenacer Makhlouf IRIMAS -- Dép. de Mathématiques, University of Haute Alsace, Mulhouse, France abdenacer.makhlouf@uha.fr Lina Song Dept. of Mathematics, Jilin University, Changchun 130012, P. R. China songln@jlu.edu.cn We introduce Hom-pre-Lie bialgebras in the general framework of the cohomology theory for Hom-Lie algebras. We show that Hom-pre-Lie bialgebras, standard Manin triples for Hom-pre-Lie algebras and certain matched pairs of Hom-pre-Lie algebras are equivalent. Due to the usage of the cohomology theory, it makes us successfully study the coboundary Hom-pre-Lie bialgebras. The notion of Hom-s-matrix is introduced, by which we can construct Hom-pre-Lie bialgebras naturally. Finally we introduce Hom-O-operators on Hom-pre-Lie algebras and Hom-L-dendriform algebras, by which we construct Hom-s-matrices. Keywords: Hom-pre-Lie algebra, Manin triple, Hom-pre-Lie bialgebra, Hom-s-equation. MSC: 16T25, 17B62, 17B99. [ Fulltext-pdf (155 KB)] for subscribers only. |