|
Journal of Lie Theory 30 (2020), No. 1, 239--257 Copyright Heldermann Verlag 2020 Manin Triples of 3-Lie Algebras Induced by Involutive Derivations Shuai Hou Dept. of Mathematics, Jilin University, Changchun 130012, P. R. China and: College of Mathematics and Information Science, Hebei University, Baoding 071002, P. R. China hshuaisun@163.com Ruipu Bai College of Mathematics and Information Science, Hebei University, Baoding 071002, P. R. China bairuipu@hbu.edu.cn Yunhe Sheng Dept. of Mathematics, Jilin University, Changchun 130012, P. R. China shengyh@jlu.edu.cn [Abstract-pdf] \newcommand{\ad}{\mathrm{ad}} Any involutive derivation $D$ on a 3-Lie algebra $A$ induces a local cocycle 3-Lie bialgebra $(A\ltimes_{\ad^*} A^*, \Delta)$. We give precise formulas of the 3-Lie algebra $((A\oplus A^*)^*, \Delta^*)$ and show that the local cocycle 3-Lie bialgebra $(A\ltimes_{\ad^*} A^*, \Delta)$ induced by the involutive derivation $D$ gives rise to a Manin triple of 3-Lie algebras. We give examples of $12$-dimensional and $16$-dimensional Manin triples using involutive derivations on certain $3$-dimensional and $4$-dimensional $3$-Lie algebras. Keywords: 3-Lie algebra, involutive derivation, semi-direct product 3-Lie algebra, Manin triple, 3-Lie bialgebra. MSC: 16T10, 16T25, 17A30, 17B62. [ Fulltext-pdf (162 KB)] for subscribers only. |