Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 29 (2019), No. 4, 1119--1135
Copyright Heldermann Verlag 2019



Representations of Simple Hom-Lie Algebras

Boujemaa Agrebaoui
Université de Sfax, Dép. des Mathématiques, Sfax 3038, Tunisia
b.agreba@fss.rnu.tn

Karima Benali
Université de Sfax, Dép. des Mathématiques, Sfax 3038, Tunisia
and: Université de Haute Alsace, IRIMAS -- Dép. des Mathématiques, 68093 Mulhouse, France
karimabenali172@yahoo.fr

Abdenacer Makhlouf
Université de Haute Alsace, IRIMAS -- Dép. des Mathématiques, 68093 Mulhouse, France
abdenacer.makhlouf@uha.fr



The purpose of this paper is to study representations of simple multiplicative Hom-Lie algebras. First, we provide a new proof using Killing form for the characterization theorem of simple Hom-Lie algebras given by Chen and Han, then discuss the representations structure of simple multiplicative Hom-Lie algebras. Moreover, we study weight modules and root space decompositions of simple multiplicative Hom-Lie algebras, characterize weight modules and provide examples of representations of sl2-type Hom-Lie algebras.

Keywords: Hom-Lie algebra, simple Hom-Lie algebra, representation, weight module.

MSC: 17B10, 17B15, 17B20.

[ Fulltext-pdf  (150  KB)] for subscribers only.