Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 29 (2019), No. 4, 1071--1092
Copyright Heldermann Verlag 2019



Classical Invariant Theory for Free Metabelian Lie Algebras

Vesselin Drensky
Inst. of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
drensky@math.bas.bg

Sehmus Findik
Dept. of Mathematics, Cukurova University, 01330 Balcali - Adana, Turkey
sfindik@cu.edu.tr



[Abstract-pdf]

Let $W_d=K^d$ be the $d$-dimensional vector space over a field $K$ of characteristic 0 with the canonical action of the general linear group $GL_d(K)$ and let $KX_d$ be the vector space of the linear functions on $W_d$. One of the main topics of classical invariant theory is the study of the algebra of invariants $K[X_d]^{SL_2(K)}$ of the special linear group $SL_2(K)$, when $KX_d$ is a direct sum of $SL_2(K)$-modules of binary forms. Noncommutative invariant theory deals with the algebra of invariants $F_d({\mathfrak V})^G$ of a group $G
Keywords: Free metabelian Lie algebras, classical invariant theory, noncommutative invariant theory.

MSC: 17B01, 17B30, 13A50, 15A72, 17B63.

[ Fulltext-pdf  (182  KB)] for subscribers only.