|
Journal of Lie Theory 28 (2018), No. 4, 941--967 Copyright Heldermann Verlag 2018 Monomial Bases and Pre-Lie Structure for Free Lie Algebras Mahdi J. Hasan Al-Kaabi Mathematics Department, College of Science, Mustansiriyah University, Palestine Street, Baghdad, Iraq Mahdi.Alkaabi@uomustansiriyah.edu.iq Dominique Manchon LMBP, CNRS-UMR6620, Université Clermont-Auvergne, 3 place Vasarély, 63178 Aubière, France Dominique.Manchon@uca.fr Frédéric Patras Laboratoire J. A. Dieudonné, UMR CNRS-UNS N7351, Université de Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 2, France Frederic.Patras@unice.fr We construct a pre-Lie structure on the free Lie algebra L(E) generated by a set E, giving an explicit presentation of L(E) as the quotient of the free pre-Lie algebra TE, generated by the (non-planar) E-decorated rooted trees, by some ideal I. The main result in this paper is a description of Gröbner bases in terms of trees. Keywords: Pre-Lie algebras, NAP algebras, free Lie algebras, monomial bases, rooted trees. MSC: 05C05, 17D25, 17A50, 17B01 [ Fulltext-pdf (342 KB)] for subscribers only. |