|
Journal of Lie Theory 28 (2018), No. 2, 561--575 Copyright Heldermann Verlag 2018 Heisenberg Algebras from Division Algebras and Parabolic Subalgebras of Simple Lie Algebras Aroldo Kaplan Dept. of Mathematics, University of Massachusetts, Amherst, MA01002, U.S.A. and: CONICET-CIEM, Universidad Nacional de Cordoba, Medina Allende, Cordoba 5000, Argentina kaplan@famaf.unc.edu.ar Mauro Subils CONICET-FCEIA, Universidad Nacional de Rosario, Pellegrini 250, Rosario 2000, Argentina subils@fceia.unr.edu.ar Every real simple Lie algebra which is not compact or isomorphic to so(1,n) contains a unique standard parabolic subalgebra whose nilradical is a Heisenberg-like algebra associated to a division algebra. Some geometric consequences are discussed. Keywords: Heisenberg, parabolic subalgebras, distributions. MSC: 22E25, 58A30, 17C60 [ Fulltext-pdf (314 KB)] for subscribers only. |