|
Journal of Lie Theory 27 (2017), No. 4, 1033--1056 Copyright Heldermann Verlag 2017 Square Integrable Representations of Reductive Lie Groups with Admissible Restriction to SL2(R) Michel Duflo UFR de Mathématiques, Université Paris 7 - Diderot, IMJ-PRG / Case 7012, 75205 Paris Cedex 13, France michel.duflo@imj-prg.fr Esther Galina FaMAF-CIEM, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentine galina@famaf.unc.edu.ar Jorge A. Vargas FaMAF-CIEM, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentine vargas@famaf.unc.edu.ar We determine the irreducible square integrable representations of a reductive connected Lie group which admit an H-admissible restriction to a subgroup H locally isomorphic to SL2(R). We show that such a representation is holomorphic and we determine the essentially unique H with this property as well as multiplicity formulae. Keywords: Discrete Series, branching laws, admissible restriction. MSC: 22E46; 17B10 [ Fulltext-pdf (332 KB)] for subscribers only. |