Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 27 (2017), No. 3, 887--905
Copyright Heldermann Verlag 2017



Gröbner-Shirshov Basis of the Universal Enveloping Rota-Baxter Algebra of a Lie Algebra

Vsevolod Gubarev
Sobolev Institute of Mathematics, Akad. Koptyug prosp. 4, Novosibirsk 630090, Russia
and: Novosibirsk State University, Pirogov str. 2, Novosibirsk 630090, Russia
wsewolod89@gmail.com

Pavel Kolesnikov
Sobolev Institute of Mathematics, Akad. Koptyug prosp. 4, Novosibirsk 630090, Russia
pavelsk@math.nsc.ru



We consider Lie algebras equipped with a Rota-Baxter operator. The forgetful functor from this category to the category of Lie algebras has a left adjoint denoted by URB. We prove an operator analogue of the Poincaré-Birkhoff-Witt theorem for URB by means of Gröbner-Shirshov bases theory for Lie algebras with an additional operator.

Keywords: Rota-Baxter operator, free Lie algebra, universal envelope.

MSC: 17B01, 17B37

[ Fulltext-pdf  (315  KB)] for subscribers only.