Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 27 (2017), No. 3, 623--636
Copyright Heldermann Verlag 2017



On the Kernel of the Maximal Flat Radon Transform on Symmetric Spaces of Compact Type

Eric L. Grinberg
Dept. of Mathematics, University of Massachusetts, 100 Morrissey Boulevard, Boston, MA 02125, U.S.A.
eric.grinberg@umb.edu

Steven Glenn Jackson
Dept. of Mathematics, University of Massachusetts, 100 Morrissey Boulevard, Boston, MA 02125, U.S.A.
jackson@math.umb.edu



[Abstract-pdf]

Let $M$ be a Riemannian globally symmetric space of compact type, $M'$ its set of maximal flat totally geodesic tori, and Ad$(M)$ its adjoint space. We show that the kernel of the maximal flat Radon transform $\tau\colon L^2(M) \rightarrow L^2(M')$ is precisely the orthogonal complement of the image of the pullback map $L^2({\rm Ad}(M))\rightarrow L^2(M)$. In particular, we show that the maximal flat Radon transform is injective if and only if $M$ coincides with its adjoint space.

Keywords: Integral geometry, Radon transform, symmetric space.

MSC: 44A12; 22E30, 22E46, 43A85, 53C35, 53C65

[ Fulltext-pdf  (370  KB)] for subscribers only.