Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 26 (2016), No. 1, 219--225
Copyright Heldermann Verlag 2016



Generalized Adjoint Actions

Arkady Berenstein
Dept. of Mathematics, University of Oregon, Eugene, OR 97403, U.S.A.
arkadiy@math.uoregon.edu

Vladimir Retakh
Dept. of Mathematics, Rutgers University, Piscataway, NJ 08854, U.S.A.
vretakh@math.rutgers.edu



[Abstract-pdf]

The aim of this paper is to generalize the classical formula $$ e^xye^{-x} = \sum_{k\ge 0}{1\over k!}\,({\rm ad}~x)^k (y) $$ by replacing $e^x$ with any formal power series $$ f(x)=1+\sum_{k\ge 1} a_k t^k. $$ We also obtain combinatorial applications to $q$-exponentials, $q$-binomials, and Hall-Littlewood polynomials.

Keywords: Adjoint action, commutator, q-exponential, Hall-Littlewood polynomial.

MSC: 20F40, 05E05

[ Fulltext-pdf  (263  KB)] for subscribers only.