Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 26 (2016), No. 1, 169--179
Copyright Heldermann Verlag 2016



Representing Lie Algebras Using Approximations with Nilpotent Ideals

Wolfgang Alexander Moens
Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
wolfgang.moens@univie.ac.at



[Abstract-pdf]

We prove a refinement of Ado's theorem: a $d$-dimensional nilpotent Lie algebra over an algebraically closed field of characteristic zero with an ideal of class $\varepsilon_1$ and codimension $\varepsilon_2$ admits a faithful representation of degree ${d + \varepsilon_1\choose\varepsilon_1} \cdot {d + \varepsilon_2\choose\varepsilon_2}$. We then apply the theory of almost-algebraic hulls to generalise this result to the representation of arbitrary finite-dimensional Lie algebras and of Lie algebras graded by an abelian, finitely-generated, torsion-free group.

Keywords: Lie algebra, representation, universal enveloping algebra, almost-algebraic Lie algebra, grading.

MSC: 17B35

[ Fulltext-pdf  (295  KB)] for subscribers only.