Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 25 (2015), No. 1, 009--036
Copyright Heldermann Verlag 2015



Product Formulas for a Two-Parameter Family of Heckman-Opdam Hypergeometric Functions of Type BC

Michael Voit
Fakultät Mathematik, Technische Universität, Vogelpothsweg 87, 44221 Dortmund, Germany
michael.voit@math.tu-dortmund.de



[Abstract-pdf]

\def\R{{\Bbb R}} \def\T{{\Bbb T}} We present explicit product formulas for a continuous two-parameter family of Heckman-Opdam hypergeometric functions of type $BC$ on Weyl chambers $C_q\subset \mathbb R^q$ of type $B$. These formulas are related to continuous one-parameter families of probability-preserving convolution structures on $C_q\times\R$. These convolutions on $C_q\times\R$ are constructed via product formulas for the spherical functions of the symmetric spaces $U(p,q)/(U(p)\times SU(q))$ and associated double coset convolutions on $C_q\times\T$ with the torus $\T$. We shall obtain positive product formulas for a restricted parameter set only, while the associated convolutions are always norm-decreasing. \endgraf Our paper is related to recent positive product formulas of R\"osler for three series of Heckman-Opdam hypergeometric functions of type $BC$ as well as to classical product formulas for Jacobi functions of Koornwinder and Trimeche for rank $q=1$.

Keywords: Hypergeometric functions associated with root systems, Heckman-Opdam theory, hypergroups, product formulas, Grassmann manifolds, spherical functions, signed hypergroups, Haar measure.

MSC: 33C67, 43A90, 43A62, 33C80

[ Fulltext-pdf  (392  KB)] for subscribers only.