Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 23 (2013), No. 3, 691--697
Copyright Heldermann Verlag 2013



A Remark on Pillen's Theorem for Projective Indecomposable kG(n)-Modules

Yutaka Yoshii
National College of Technology, 22 Yata, Yamatokoriyama, Nara, Japan 639-1080
yyoshii@libe.nara-k.ac.jp



[Abstract-pdf]

Let $g$ be a connected, semisimple and simply connected algebraic group defined and split over the finite field of order $p$, and let $g(n)$ be the corresponding finite chevalley group and $g_n$ the $n$-th frobenius kernel. Pillen has proved that for a $3(h-1)$-deep and $p^n$-restricted weight $\lambda$, the $G$-module $Q_n(\lambda)$ which is extended from the $G_n$-PIM for $\lambda$ has the same socle series as the corresponding $kG(n)$-PIM $U_n(\lambda)$. Here we remark that this fact already holds for $\lambda$ being $2(h-1)$-deep.

Keywords: Loewy series, projective indecomposable modules, 2(h-1)-deep weights

MSC: 20C33, 20G05, 20G15

[ Fulltext-pdf  (244  KB)] for subscribers only.