Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 22 (2012), No. 2, 361--395
Copyright Heldermann Verlag 2012



The Spherical Transform of any k-Type in a Locally Compact Group

Pablo Manuel Román
Dept. of Mathematics, Katholieke Universiteit, Celestijnenlaan 200b - bus 2400, 3001 Leuven, Belgium
and: CIEM -- FaMAF, Universidad Nacional, Medina Allende s/n, Ciudad Universitaria, Córdoba, Argentina
roman@mate.uncor.edu

Juan Tirao
CIEM -- FaMAF, Universidad Nacional, Medina Allende s/n, Ciudad Universitaria, Córdoba, Argentina
tirao@mate.uncor.edu



[Abstract-pdf]

Given a locally compact group $G$ and a compact subgroup $K$, we develop and study a spherical transform on the convolution algebra $C_{c,\delta}(G)$ of all continuous functions $f$ with compact support on $G$ such that $\overline \chi_\delta\ast f=f\ast \overline \chi_\delta=f$. Here $\chi_\delta$ denotes the character of a unitary irreducible representation of $K$ times its dimension. We obtain an inversion formula for the spherical transform by using the Fourier inversion formula in $G$. \hfill\break The case of the group $G={\rm SU}(2,1)$ and the compact subgroup $K={\rm U}(2)$ is discussed in detail. We give explicit expressions for the spherical transform and the corresponding inversion formula in terms of the matrix hypergeometric function ${}_2H_1$.

Keywords: Spherical transform, spherical functions, matrix hypergeometric function.

MSC: 33C45, 22E46

[ Fulltext-pdf  (434  KB)] for subscribers only.