|
Journal of Lie Theory 21 (2011), No. 4, 813--836 Copyright Heldermann Verlag 2011 Cohomology and Deformations of Hom-algebras Faouzi Ammar Université de Sfax, Faculté des Sciences, B. P. 1171, 3000 Sfax, Tunisia Faouzi.Ammar@rnn.fss.tn Zeyneb Ejbehi Université de Sfax, Faculté des Sciences, B. P. 1171, 3000 Sfax, Tunisia ejbehizeyneb@yahoo.fr Abdenacer Makhlouf Université de Haute Alsace, Laboratoire de Mathématiques, Informatique et Applications, 4 Rue des Frères Lumière, 68093 Mulhouse, France Abdenacer.Makhlouf@uha.fr The purpose of this paper is to define cohomology structures on Hom-associative algebras and Hom-Lie algebras. The first and second coboundary maps were introduced by Makhlouf and Silvestrov in the study of one-parameter formal deformations theory. Among the relevant formulas for a generalization of Hochschild cohomology for Hom-associative algebras and a Chevalley-Eilenberg cohomology for Hom-Lie algebras, we define a Gerstenhaber bracket on the space of multilinear mappings of Hom-associative algebras and a Nijenhuis-Richardson bracket on the space of multilinear maps of Hom-Lie algebras. Also we enhance the deformation theory of this Hom-algebras by studying the obstructions. Keywords: Hom-Lie algebra, cohomology, deformation. MSC: 16S80,16E40,17B37,17B68 [ Fulltext-pdf (345 KB)] for subscribers only. |