Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 18 (2008), No. 3, 517--521
Copyright Heldermann Verlag 2008



Closedness of the Tangent Spaces to the Orbits of Proper Actions

Madeleine Jotz
Dép. de Mathématiques, Ecole Polytechnique Fédérale, 1015 Lausanne, Switzerland
madeleine.jotz@epfl.ch

Karl-Hermann Neeb
Fachbereich Mathematik, Technische Universität, Schlossgartenstrasse 7, 64289 Darmstadt, Germany
neeb@mathematik.tu-darmstadt.de



[Abstract-pdf]

We show that for any proper action of a Banach-Lie group $G$ on a Banach manifold $M$, the corresponding tangent maps ${\frak g} \to T_x(M)$ have closed range for each $x \in M$, i.e., the tangent spaces of the orbits are closed. As a consequence, for each free proper action on a Hilbert manifold, the quotient $M/G$ carries a natural manifold structure.

Keywords: Banach Lie group, Banach manifold, proper action.

MSC: 22E65, 58B25, 57E20

[ Fulltext-pdf  (152  KB)] for subscribers only.