|
Journal of Lie Theory 18 (2008), No. 2, 445--469 Copyright Heldermann Verlag 2008 A Local-to-Global Principle for Convexity in Metric Spaces Petre Birtea Departamentul de Matematica, Universitatea de Vest, 1900 Timisoara, Romania birtea@math.uvt.ro Juan-Pablo Ortega CNRS - Dép. de Mathématiques, Université de Franche-Comté, UFR des Sciences et Techniques, 16 route de Gray, 25030 Besancon, France Juan-Pablo.Ortega@univ-fcomte.fr Tudor S. Ratiu Section de Mathématiques and Bernoulli Center, Ècole Polytechnique Fédérale, 1015 Lausanne, Switzerland tudor.ratiu@epfl.ch We introduce an extension of the standard Local-to-Global Principle used in the proof of the convexity theorems for the momentum map to handle closed maps that take values in a length metric space. As an application, this extension is used to study the convexity properties of the cylinder valued momentum map introduced by Condevaux, Dazord, and Molino. Keywords: Length metric space, convexity, momentum map. MSC: 53C23, 53D20 [ Fulltext-pdf (285 KB)] for subscribers only. |