Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 18 (2008), No. 1, 067--082
Copyright Heldermann Verlag 2008



Klein Geometries, Parabolic Geometries and Differential Equations of Finite Type

Ender Abadoglu
Yeditepe Universitesi, Matematik Bölümü, 26 Agustos Yerlesimi, 81120 Kayisdagi -- Istanbul, Turkey
eabadoglu@yeditepe.edu.tr

Ercüment Ortacgil
Bogazici Universitesi, Matematik Bölümü, 34342 Bebek -- Istanbul, Turkey
ortacgil@boun.edu.tr

Ferit Öztürk
Bogazici Universitesi, Matematik Bölümü, 34342 Bebek -- Istanbul, Turkey
ferit.ozturk@boun.edu.tr



[Abstract-pdf]

We define the infinitesimal and geometric orders of an effective Klein geometry $G/H$. Using these concepts, we prove (i) For any integer $m\geq 2$, there exists an effective Klein geometry $G/H$ of infinitesimal order $m$ such that $G/H$ is a projective variety. (ii) An effective Klein geometry $G/H$ of geometric order $M$ defines a differential equation of order $M+1$ on $G/H$ whose global solution space is $G$.

Keywords: Homogeneous space, jet.

MSC: 53C30

[ Fulltext-pdf  (225  KB)] for subscribers only.