|
Journal of Lie Theory 16 (2006), No. 3, 579--600 Copyright Heldermann Verlag 2006 Lifting Smooth Curves over Invariants for Representations of Compact Lie Groups, III Andreas Kriegl Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, 1090 Wien, Austria Andreas.Kriegl@univie.ac.at Mark Losik Saratov State University, ul. Astrakhanskaya 83, 410026 Saratov, Russia losikMV@info.sgu.ru Peter W. Michor Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, 1090 Wien, Austria und: Erwin Schrödinger Institut für Mathematische Physik, Boltzmanngasse 9, 1090 Wien, Austria Peter.Michor@esi.ac.at Armin Rainer Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, 1090 Wien, Austria armin.rainer@univie.ac.at Any sufficiently often differentiable curve in the orbit space V/G of a real finite dimensional orthogonal representation G to O(V) of a finite group G admits a differentiable lift into the representation space V with locally bounded derivative. As a consequence any sufficiently often differentiable curve in the orbit space V/G can be lifted twice differentiably which is in general best possible. These results can be generalized to arbitrary polar representations. Finite reflection groups and finite rotation groups in dimensions two and three are discussed in detail. Keywords: Invariants, representations. MSC: 22E45, 20F55 [ Fulltext-pdf (255 KB)] for subscribers only. |