|
Journal of Lie Theory 16 (2006), No. 3, 471--482 Copyright Heldermann Verlag 2006 Reduction Theorems for a Certain Generalization of Contact Metric Manifolds Luigia Di Terlizzi Dip. di Matematica, Università di Bari, Via Orabona 4, 70125 Bari, Italy terlizzi@dm.uniba.it Jerzy J. Konderak Dip. di Matematica, Università di Bari, Via Orabona 4, 70125 Bari, Italy konderak@dm.uniba.it We consider a Riemannian manifold with a compatible f-structure which admits a parallelizable kernel. With some additional integrability conditions it is called an (almost) S-manifold, which is a natural generalization of a contact metric and a Sasakian manifold. Then we consider an action of a Lie group preserving the given structures. In such a context we define a momentum map and prove some reduction theorems. Keywords: Contact metric manifold, momentum map, contact reduction, generalized contact metric manifold, f-structure. MSC: 53D10, 53D20, 53C15, 53C25 [ Fulltext-pdf (206 KB)] for subscribers only. |