Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 16 (2006), No. 2, 221--224
Copyright Heldermann Verlag 2006



On Inverse Limits of Finite Dimensional Lie Groups

Adel A. George Michael
Dept. of Mathematics, Voorhees College, Denmark, SC 29042, U.S.A.
adel.george@yahoo.com



We give a short proof of the Hofmann-Morris Theorem characterizing inverse limits of finite dimensional Lie groups [see K. H. Hofmann and S. A. Morris, Projective limits of finite dimensional Lie groups, Proc. Lond. Math. Soc. 87 (2003) 647--676, Theorem 4.7]. The proof depends on the Gleason-Palais characterization of finite dimensional Lie groups [see A. Gleason and R. Palais, On a class of transformation groups, Amer. J. Math. 79 (1957) 631--648, Theorem 7.2].

Keywords: Finite dimensional Lie group, inverse limit.

MSC: 22A05

[ Fulltext-pdf  (126  KB)] for subscribers only.