|
Journal of Lie Theory 15 (2005), No. 2, 521--560 Copyright Heldermann Verlag 2005 Canonical Coordinates for Coadjoint Orbits of Completely Solvable Groups Didier Arnal Institut de Mathématiques, Université de Bourgogne, CNRS UMR 5584, BP 47870, 21078 Dijon, France didier.arnal@u-bourgogne.fr Mabrouk Ben Ammar Dép. de Mathématiques, Faculté des Sciences, BP 802, 3038 Sfax, Tunisia mabrouk.benammar@fss.rnu.tn Bradley N. Currey Saint Louis University, Dept. of Mathematics and Computer Science, Saint Louis, MO 63103, U.S.A. curreybn@slu.edu Béchir Dali Dép. de Mathématiques, Faculté des Sciences, 7021 Zarzouna -- Bizerte, Tunisia bechir.dali@fss.rnu.tn We show that when the methods of D. Arnal and J. C. Cortet ["Representations * des groupes exponentiels", Journal Funct. Anal. 92 (1990) 103--135] are combined with the explicit stratification and orbital parameters of B. N. Currey ["The structure of the space of co-adjoint orbits of an exponential solvable Lie group", Trans. Amer. Math. Soc. 332 (1992) 241--269], and B. N. Currey and R. C. Penney ["The structure of the space of co-adjoint orbits of a completely solvable Lie group", Michigan Math. J. 36 (1989), 309--320], the result is a construction of explicit analytic canonical coordinates for any coadjoint orbit O of a completely solvable Lie group. For each layer in the stratification, the canonical coordinates and the orbital cross-section together constitute an analytic parametrization for the layer. Finally, we quantize the minimal open layer with the Moyal star product and prove that the coordinate functions are in a convenient completion of spaces of polynomial functions on g*, for a metric topology naturally related to the star product. Keywords: Completely solvable Lie groups, parametrization, canonical coordinates. MSC: 22E25, 22E27, 53D55 [ Fulltext-pdf (333 KB)] for subscribers only. |