|
Journal of Lie Theory 15 (2005), No. 2, 379--391 Copyright Heldermann Verlag 2005 Naturally Graded p-Filiform Lie Algebras in Arbitrary Finite Dimension J. M. Cabezas Dpto. Matemática Aplicada, E. U. de Ingeniería, Universidad del País Vasco, Nieves Cano 12, 01006 Vitoria, Spain mapcamaj@vc.ehu.es E. Pastor Dpto. Matemática Aplicada, E. U. de Ingeniería, Universidad del País Vasco, Nieves Cano 12, 01006 Vitoria, Spain mappasae@vc.ehu.es [Abstract-pdf] The present paper offers the classification of naturally graded $p$-filiform Lie algebras in arbitrary finite dimension $n$. For sufficiently high $n$, ($n \geq \max \{3p-1,p+8\}$), and for all admissible value of $p$ the results are a generalization of Vergne's in case of filiform Lie algebras [Vergne, M., Cohomologie des alg\`ebres de Lie nilpotentes. Application \`a l'\'etude de la variet\'e des alg\`ebres de Lie nilpotentes, Bull. Soc. Math. France 98 (1970) 81--116]. Keywords: Nilpotent Lie algebra, filiform, naturally graded. MSC: 22E60, 17B30; 17B70 [ Fulltext-pdf (279 KB)] for subscribers only. |