Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article


Journal of Lie Theory 15 (2005), No. 1, 089--104
Copyright Heldermann Verlag 2005



Generalized Nonlinear Superposition Principles for Polynomial Planar Vector Fields

Isaac A. García
Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II 69, 25001 Lleida, Spain

Hector Giacomini
Lab. de Mathématiques et Physique Théorique, CNRS UMR 6083, Fac. des Sciences et Techniques, Université de Tours, Parc de Grandmont, 37200 Tours -- France

Jaume Giné
Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II 69, 25001 Lleida, Spain



[Abstract-pdf]

We study some aspects of the integrability problem for polynomial vector fields $\dot{x}=P(x,y)$, $\dot{y}=Q(x,y)$. We analyze the possible existence of first integrals of the form $I(x,y)=(y\!-\!g_1(x))^{\alpha_1} (y\!-\!g_2(x))^{\alpha_2} \cdots(y\!-\!g_\ell(x))^{\alpha_\ell}h(x)$, where $g_1(x), \ldots, g_{\ell}(x)$ are unknown particular solutions of $dy/dx=Q(x,y)/P(x,y)$, $\alpha_i$ are unknown constants and $h(x)$ is an unknown function. We show that for certain systems some of the particular solutions remain arbitrary and the other ones are explicitly determined or are functionally related to the arbitrary particular solutions. We obtain in this way a nonlinear superposition principle that generalize the classical nonlinear superposition principle of the Lie theory. In general, the first integral contains some arbitrary solutions of the system but also quadratures of these solutions and an explicit dependence on the independent variable. In the case when all the particular solutions are determined, they are algebraic functions and our algorithm gives an alternative method for determining such type of solutions.

Keywords: Nonlinear differential equations, polynomial planar vector fields, nonlinear superposition principle, Darboux first integral, Liouvillian first integral.

MSC: 34C05; 34C14, 22E05

[ Fulltext-pdf  (220  KB)] for subscribers only.