|
Journal of Lie Theory 13 (2003), No. 2, 465--479 Copyright Heldermann Verlag 2003 Invariant Control Sets on Flag Manifolds and Ideal Boundaries of Symmetric Spaces Marcelo Firer Instituto de Matemática, Universidade Estadual de Campinas, Cx. P. 6065, 13.081-970 Campinas SP, Brasil Osvaldo G. do Rocio Centro de Ciencias Exatas, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900 Maringá PR, Brasil [Abstract-pdf] Let $G$ be a semisimple real Lie group of non-compact type, $K$ a maximal compact subgroup and $S\subseteq G$ a semigroup with nonempty interior. We consider the ideal boundary $\partial_{\infty}(G/K)$ of the associated symmetric space and the flag manifolds $G/P_{\Theta}$. We prove that the asymptotic image $\partial_{\infty} (Sx_{0})\subseteq \partial_{\infty}(G/K)$, where $x_{0}\in G/K$ is any given point, is the maximal invariant control set of $S$ in $\partial_{\infty}(G/K)$. Moreover there is a surjective projection $$\pi\colon\partial_{\infty}(Sx_{0}) \rightarrow \bigcup\limits_{\Theta\subseteq\Sigma}C_{\Theta},$$ where $C_{\Theta}$ is the maximal invariant control set for the action of $S$ in the flag manifold $G/P_{\Theta}$, with $P_{\Theta}$ a parabolic subgroup. The points that project over $C_{\Theta}$ are exactly the points of type $\Theta$ in $\partial_{\infty}(Sx_{0})$ (in the sense of the type of a cell in a Tits Building). Keywords: Semigroups, semi-simple Lie groups, control sets, ideal boundary. MSC: 20M20; 93B29, 22E46 [ Fulltext-pdf (263 KB)] for subscribers only. |